A RE-EXAMINATION OF THE "UNIFIED" Sy2-E2 MECHANISM

D. J. McLennan

Department of Chemistry, University of Auckland, Auckland, New Zealand. (Received in UK 11 May 1971; accepted in UK for publication 20 May 1971)

Doubt¹⁻³ has recently been cast on the claims of Sneen⁴ to have demonstrated a "unified" $S_{y} 1 - S_{y}^{2}$ mechanism, in which an ion-pair is involved in both the unimolecular and bimolecular steps. We now reconsider the claim that E2 and S_{N}^{2} reactions of 1-phenethyl bromide (1-PEB) with sodium ethoxide in ethanol proceed via a common ion-pair intermediate⁵ (Scheme I) instead of competitively as has been previously supposed.⁶

I are (i) that the observed kinetics

and product ratios are in agreement with those expected for the ion-pair mechanism (which of course is not compulsive evidence) and (ii) that second-order rate "constants", k_o, for a competitive S_N^2 -E2 scheme as calculated from Eq. (1), are not in fact constant, as can be seen

$$k_{obs} = k_1 + k_2 / 0 E t_7$$
(1)

from Table I. In Eq.(1), k_{obs} is a pseudo first-order rate constant and $k_{obs} = k_1$ when \overline{OEt} = 0, i.e. when the reaction is wholly solvolytic.

However, Eq.(1) does NOT represent the kinetics expected for a competitive S_y^2 -E2 system. The latter is shown, together with solvolytic reactions of the substrate, in Scheme II. The k_{1S} and k_{1R} steps in the Schemes are not necessarily as simple as has been illustrated. If f_{R}

 $\begin{array}{c} k_{1S} & \text{ ether} \\ k_{1S} & \text{ olefin} \\ - \text{ Br} & k_{2S} / \overline{\text{OEt}}^{-} & \text{ olefin} \\ k_{2D} / \overline{\text{OEt}}^{-} & \text{ olefin} \end{array} \begin{array}{c} \text{ is the fraction of of oterms during first-order} \\ \text{ ions (performed under pseudo first-order conditions) consideration of the product ratio gives Eq.(2), where the rate constants pertain to Scheme II, and consideration of the rate of bromide ion production gives Eq.(3). \\ \end{array}$ is the fraction of olefin formed in all react. From these equations arises the expression⁷ shown in Eq.(4) for k_{2E} , the separated E2

rate constant for a competitive system. The fraction of styrene produced in neutral solvolysis $f_{\Xi} = \frac{k_{1\Xi} + k_{2B} \sqrt{0Et^{7}}}{---}$ is f.

$$k_{1E} + k_{2E} \sqrt{OEt} + k_{1S} + k_{2S} \sqrt{OEt}$$
(2)

Using rate and product data from our work and from the papers of Sneen⁵ and Taylor⁸, we have calculated values of k_{2R} , which are shown in Table I. Values of k_{2R} , (not shown)

	TABLE I					
		The 1-PEB/NaOEt Reac	tion in EtOH at	50.0°.		
/NaOEt7 (M)	10 ⁴ k _{obs} (a)	f _E	10 ⁴ k ₂ (b)	10 ⁴ k2E (b)	≺ ^(c)	
0	1.13 ^(d)	$\underline{ca.} 0.03^{(d)}$	-	-	-	
0.114	3.54 ^(d)	0.165 ^(e)	21.1	4.82	0.480	
0.121	3.57 ^(d)	0.170 ^(e)	20.2	4.74	0.475	
0.362	5•35 ^(f)	0.275 ^(f)	11.7	4.00	0.352	
0•533	6.57 ^(d)	0.296(0)	10.2	3.58	0.287	
0.686	7.48 ^(d)	0.320 ^(e)	9.2	3.44	0.243	
0.844	8.4 ^(f)	0.323 ^(f)	8.6	3.17	0.213	
1.07	9.8 ^(d)	0.325 ^(e)	8.2	2.94	0 . 177	
1.432	12.0 ^(f)	0.329 ^(f)	7.6	2.67	-	
1.714	13.5 ^(f)	0.331 ^(f)	7.2	2.58	-	
aIn sec.1	$b_{\text{In M}_{\bullet}^{-1}\text{sec}_{\bullet}^{-1}}$	Degree of dissociati	on of sodium eth	oxide ion-pairs;	see tert.	

^dRef. 5. ^eInterpolated from data in Ref. 8. ^fThis work; rates measured by titration for Br, <u>styrene</u> measured spectrophotometrically.

calculated from $E_{q_0}(5)$ are not constant, and their decrease with increasing/NaOEt/ cannot be attributed to a normal salt effect. This is hardly surprising, since the numerical value of

$$k_{25} = \frac{(1-f_{\rm E})k_{\rm obs} - (1-f_{\rm o})k_{\rm 1}}{\sqrt{0} {\rm Et}^{-7}} \qquad (5)$$

 $(1-f_0)k_1$ is important in determining k_{2S} , and it is very unlikely that k_1 is not subject to a significant salt effect. The well-known phenomenon of lyate-ion retardation⁹ operating on k_1 may be responsible for some of the decrease in k_{2S} , but quantitative constancy is not easily obtained. The use of various linear relationships between k_1 and /HaOEt/ in conjunction with corrections to the resulting k_{2S} values for ion-pairing of NaOEt (see below) yields reasonably constant values except for the second and third entries in Table I. It is impossible to independently assess the quantitative form of the lyate ion retardation of course. This phenomenon is not important when k_{2S} values are considered since $f_{0}k_1$ is insignificant compared with f_{ex} in almost all NaOEt/EtOH systems.

Values of k_{2E} are seen to decrease also with increasing <u>NaOEt7</u>. This does not disqualify the mechanism of Scheme II, as two lines of evidence indicate that the decrease is caused by a normal salt effect. Firstly, if k_1 and k_1 are the respective rate constants for E2 attack of free OEt⁻ and the ion-pair Na⁺OEt⁻ on 1-PEB, ^{3,10} consideration of Eq.(6) leads

to the conclusion that if k_{2E} is subject to an ion-pairing effect, a plot of $k_{PE}/(1-\alpha)$ vs.

 $\alpha/(1-\alpha)$, where α is the degree of dissociation of NaOEt ion-pairs, should be linear.¹¹ The use of interpolated α values¹⁰ does indeed lead to a linear plot (Fig. I) with correlation coefficient 0.999, whence $k_i = (7.95 \pm 0.07) \times 10^{-4} \text{ M}_{\bullet}^{-1} \sec^{-1}$ and $k_{ip} = (1.88 \pm 0.04) \times 10^{-4} \text{ M}_{\bullet}^{-1} \sec^{-1}$ It is noteworthy that values of k_2 calculated according to Eq.(1) do not yield a linear plot of this sort, in accordance with Smeen's observation that their decrease with increasing [NaOEt] is not a normal salt effect.⁵

Secondly, we fine that the effect of \sqrt{NaOEt} on the unambiguous¹² k_{2E} values for dehydrobromination of 2-phenethyl bromide (2-PEB), where interfering solvolysis and substitution reactions can be ignored, parallels its effect on 1-PEB E2 rates. A salt effect on 2-PEB rates at 55⁰ has been reported¹² and in Table II are shown k_{2E} values, obtained under pseudo first-order conditions and calculated from Eq.(4) with $f_E = 1.00$ and $k_1 = 0$, for the

	The 2-PE			
/NaOIt7 (M)	10 ⁴ k (b) obs	10 ⁴ k _{2E} (c)	∝ (a)	10 ⁴ k _{2E} (1-PEB) ^(c,e)
0.1	-	34•2 ^(f)	0.495	4.90
0.207	6.83	33.0	0.422	4.47
0.362	11.5	31.7	0.352	4.00
0.614	17.7	28.8	0.260	3.49
0.844	24.1	28.6	0.213	3.17
1.041	28.8	27.7	0.179	3.00

^aRates measured spectrophotometrically. <u>[Styrene]</u> = 100% in all runs. Solvolysis accounts for <u>ca.</u> 2% of total reaction at lowest <u>[NaOEt]</u> and less at other concentrations. ^bIn sec.¹ ^cIn M.¹sec.¹ ^dDegree of dissociation of sodium ethoxide ion-pairs, from Ref. 10. ⁹Calculated from data in Table I. ^fFrom Ref. 13.

2-PEB/NaOEt reaction at 50°. A plot of $k_{2E}/(1-\alpha)$ vs. $\alpha/(1-\alpha)$ is again linear; $k_i = (45.0 \pm 0.7) \pm 10^{-4}$ M. Bec.¹, $k_{1p} = (23.9 \pm 0.4) \pm 10^{-4}$ M. sec.¹ and correlation coefficient = 0.999. Most importantly, a plot of k_{2E} for 1-PEB vs. k_{2E} for 2-PEB with rate constants taken at corresponding NaOEt7 values is satisfactorily linear, with correlation coefficient = 0.989 (Fig. II). The slope is not unity and neither is it expected to be so. This is not a linear free energy relationship, and the non-unit slope merely reflects the fact that the relative reactivity of OEt⁻ vs. Na⁺OEt⁻ differs between 1-PEB and 2-PEB. Thus the salt effect on the undoubted second-order rate constants for 2-PEB dehydrobromination is quantitatively comparable with the salt effect that we claim is affecting the 1-PEB k_{2E} values in a competitive system. Such negative salt effects are used by Kohnstam and co-workers¹ in their counter to the proposal of the "unified" S_w1-S_w2 mechanism.

While the present work does not remove the Sneen mechanism from consideration, it does show that in an elimination system inherently favourable to a "unified" ion-pair mechanism, the competitive S_N^{2-22} scheme remains viable. A radical change of views on bimolecular elimination is not called for at this time, and prevailing ideas on transition states, stereochemistry, substituent effects etc.¹⁴ need not be reconsidered.

ACKNOWLEDGEMENT: I thank Mr R. J. Wong for least-squares computations.

REFERENCES

- 1. B. J. Gregory, G. Kohnstam, M. Paddon-Row, and A. Queen, Chem. Comm., 1032 (1970).
- 2. J. L. Kurz and J. C. Harris, <u>J.Amer.Chem.Soc.</u>, <u>92</u>, 4117 (1970).
- 3. A. Ceccon, I. Papa, and A. Fava, J.Amer.Chem.Soc., 88, 4643 (1966).
- R. A. Sneen and J. W. Larsen, <u>J.Amer.Chem.Soc.</u>, <u>91</u>, 362 (1969); <u>idem</u>, <u>ibid</u>, <u>91</u>, 6031 (1969).
- 5. R. A. Sneen and H. W. Robbins, <u>J.Amer.Chem.Soc.</u>, <u>91</u>, 3100 (1969).
- C. K. Ingold "Structure and Mechanism in Organic Chemistry", 2nd Edn., G. Bell and Sons, London, 1969, p. 651.
- 7. R. A. Bartsch and J. F. Bunnett, <u>J.Amer.Chem.Soc.</u>, <u>90</u>, 408 (1968) have used a similar treatment in analysing the reaction of 2-hexyl brosylate with NaOMe/MeOH.
- 8. W. Taylor, <u>J.Chem.Soc</u>., 1962 (1937).
- 9. O. T. Benfey, E. D. Hughes, and C. K. Ingold, J.Chem. Soc., 2494 (1952).
- 10. A. Brandstrom, Arkiv for Kemi, 11, 527 (1957).
- R. A. Sneen and F. R. Rolle, <u>J.Amer.Chem.Soc.</u>, <u>91</u>, 2140 (1969) have questioned this interpretation of such salt effects. But whatever is the nature of the salt effect, it is the same for 1-PEB and 2-PEB (see Table II and Fig. II).
- 12. E. D. Hughes, C. K. Ingold, S. Masterman, and B. J. MacNulty, <u>J.Chem.Soc</u>., 899 (1940).
- 13. W. H. Saunders and R. A. Williams, <u>J.Amer.Chem.Soc.</u>, <u>79</u>, 3712 (1957).
- J. F. Bunnett, <u>Angew.Chem.Int.Edn.</u>, 1, 225 (1962); <u>idem</u>, <u>Survey of Progress in Chemistry</u>, <u>5</u>, 53 (1969).

